Руководства, Инструкции, Бланки

инструкция по ведению вхр парового котла img-1

инструкция по ведению вхр парового котла

Категория: Инструкции

Описание

Проблемы водно-химического режима паровых и водогрейных

Проблемы водно-химического режима паровых и водогрейных котлов, работающих на металлургических предприятиях

Гарбер К.Э. Кострико Е.Э. Храмов Н.А. ОАО «Системэнерго» г. Череповец

С введением в действие изменений № 2 к Правилам устройства и безопасной эксплуатации паровых и водогрейных котлов [1], в которых, в частности, введено требование о необходимости разработки специализированными наладочными организациями инструкций и режимных карт по ВХР котлов и эксплуатации водоподготовительных установок, которое ранее было сформулировано в РД 10-165-97 [2] и РД 10-179-98 [3], владельцы котельных установок (особенно на крупных предприятиях) стали уделять больше внимания ведению водно-химического режима котлов.

Надо отметить, что основным стимулом послужило все-таки отнюдь не понимание владельцами котлов того факта, что на долю нарушений водно-химического режима в настоящее время приходится более 20 % повреждаемости котельного оборудования [4, 5], и не осознание тех потерь, которые они несут ежегодно в результате коррозии оборудования [6], а в первую очередь соображения безопасности, контроль над которой и проверка выполнения Правил. [1] осуществляется органами Госгортехнадзора России.

В г. Череповце наибольшее количество опасных производственных объектов, подконтрольных Госгортехнадзору РФ, и в том числе паровых и водогрейных котлов, сосредоточено в ОАО «Северсталь» - одном из крупнейших металлургических предприятий России, поэтому им уделяется самое пристальное внимание со стороны местных органов ГГТН РФ. ОАО «Северсталь» одним из первых развернуло работы по наладке водно-химического режима паровых и водогрейных котлов с разработкой инструкций и режимных карт, обратившись в несколько специализированных организаций, в том числе к таким признанным авторитетам в области наладки ВХР, как НПО ЦКТИ (г. С.-Петербург), ВТИ (г. Москва), Ивановский энергетический институт и т.д. Наша организация также приняла участие в этой работе, выполнив наладку ВХР котлов-утилизаторов, работающих в коксохимическом производстве (КХП), и водогрейных котлов. В данной статье мы изложим ряд соображений, возникших в ходе выполнения этой работы.

Водно-химический режим энергетического оборудования должен обеспечить работу «без повреждений и снижения экономичности» (ПТЭ [7], п. 4.8.1), вызванных коррозией внутренних поверхностей оборудования, а также образованием накипи и отложений на теплопередающих поверхностях. Применительно к котлам-утилизаторам установок сухого тушения кокса (УСТК), основной экономический эффект от правильного ведения водно-химического режима может быть достигнут не только за счет повышения производительности тушильных камер по коксу благодаря улучшению теплообмена в котле, но и за счет снижения затрат на эксплуатацию котлов, а именно, снижения расхода питательной воды за счет уменьшения непрерывной продувки и увеличения межремонтного интервала поверхностей нагрева котлов за счет снижения скорости коррозии и накипеобразования.

Котлы-утилизаторы типа КСТ-80 УСТК, предназначенные для утилизации тепла, выделяющегося при тушении кокса, производят пар с давлением 3,9 МПа, который направляется на турбины для производства электроэнергии. Котлы водотрубные, с принудительной циркуляцией, с одной ступенью испарения, в барабане установлен стандартный набор сепарационных устройств. Предусмотрено фосфатирование котловой воды, от которого отказались после первых нескольких лет эксплуатации котлов, поскольку не смогли обеспечить гибкой системы дозирования фосфата, своевременно реагирующей на резкие колебания производительности котла, зависящей от процесса сухого тушения кокса. В целях повышения срока службы поверхностей нагрева при работе в бесфосфатном водно-химическом режиме было решено снизить допустимый предел солесодержания котловой воды до 1200 мг/кг. В результате, в условиях отсутствия ступенчатого испарения, при хорошем качестве и низком солесодержании (не более 150 мг/кг) питательной воды, приходится поддерживать непрерывную продувку в пределах 12-15%, т.е. значительно больше 5-6% - оптимальной величины для котлов-

утилизаторов среднего давления [8], хотя, как показали проведенные теплохимические испытания, это и не требуется для обеспечения надлежащего качества пара на турбоустановках.

Замена поверхностей нагрева котлов КСТ-80, работающих в КХП ОАО «Северсталь», производится каждые 7-9 лет; основная причина замены - абразивный наружный износ коксовой пылью. Однако достаточно часты случаи разрыва змеевиков из-за высокой загрязненности накипью внутренней поверхности труб, вплоть до полного забивания. Это явление характерно для наиболее теплонапряженной зоны, причем змеевики, соседние с забитым, могут иметь загрязненность не более 200 г/м2. По нашему мнению, высокая скорость роста накипи в отдельных параллельно включенных змеевиках испарительной поверхности нагрева вызвана замедлением скорости движения в них пароводяной смеси из-за наличия, например, не удаленного при ремонте грата на сварных швах, частицы которого одновременно служат центрами кристаллизации.

С точки зрения водно-химического режима, у этих котлов существуют еще две проблемы. Во-первых, это неудачная конструкция непрерывной продувки, которая выполнена байпасом на трубопроводе периодической продувки, хотя назначение непрерывной и периодической продувок совершенно разное: в одном случае это регулирование солесодержания котловой воды, а в другом - удаление шлама, и соответственно различаются требования к точкам их вывода (линия непрерывной продувки должна быть выведена из зоны максимального солесодержания котловой воды и не должна заноситься шламом). Во-вторых, это проблема шламоотделения: в котле предусмотрены всего две точки периодической продувки - из барабана и из шламоотделителя, сетка которого склонна забиваться, значительно увеличивая гидравлическое сопротивление котла и вызывая снижение скорости циркуляции.

В 80-90-х гг. проводились регулярные химические промывки поверхностей нагрева этих котлов ингибированной соляной кислотой, с предварительным щелочением и последующей нейтрализацией фосфатом натрия, однако результаты промывок были неоднозначными: одни змеевики очищались полностью, а в других количество накипи уменьшалось незначительно или даже увеличивалось (по-видимому, происходило перераспределение и вторичное осаждение отмытой накипи). В последние 7-10 лет промывки не проводились, за исключением щелочения вновь установленных поверхностей нагрева.

Мы рекомендовали для этих котлов повышение на 25 % допустимого солесодержания котловой воды, учащение (или увеличение длительности) периодических продувок шламоотделителя, более регулярный контроль загрязненности поверхностей нагрева и проведение при необходимости эксплуатационных химических промывок «на ходу» современными моющими препаратами на основе комплексонов.

Водно-химический режим водогрейных котлов непосредственно связан с подготовкой подпиточной воды теплосети. Теплосеть ОАО «Северсталь» представляет собой единую сложную систему, включающую в себя также значительную часть городских сетей, т.к. водогрейные котлы металлургического комбината осуществляют отопление всей прилегающей к нему части города. Подпиточную воду теплосети готовят несколько цехов комбината, причем качество подпитки резко различается, т.к. в одних цехах проводится умягчение воды натрий-катионированием (для сравнительно мягкой воды реки Шексна, жесткость которой не превышает 2,5 мг-экв/кг, это оптимальный способ подготовки подпиточной воды [9]); а в других отсутствует даже механическая фильтрация и осуществляется только деаэрация. В контур теплосети «водогрейная котельная - город», по-видимому, поступает также подпиточная вода муниципального предприятия теплоснабжения.

Таким образом, сетевая вода имеет усредненный состав, зависящий от множества неконтролируемых факторов. В целом, по результатам контроля в разных участках теплосети, постоянно отмечаются превышения в 1,5-2 раза нормативов ПТЭ [7] по карбонатному индексу и содержанию соединений железа. Решение вопроса улучшения качества сетевой воды возможно только в рамках комбината в целом, а не отдельных цехов и тем более не отдельных котлов, и в первую очередь следует обеспечить механическую очистку и умягчение всей поступающей в теплосеть подпиточной воды.

Альтернативными рекомендациями являются: постоянная или периодическая обработка подпиточной воды препаратами, содержащими комплексоны на основе фосфоновых соединений, которые обеспечивают безнакипный водно-химический режим тепловых сетей и способствуют превращению накипи в мелкодисперсный шлам, легко удаляющийся из сети как с продувками, так и при утечках сетевой воды; а также установка на линиях обратной воды перед водогрейными котлами скоростных механических фильтров, удаляющих избыток соединений железа, возвращающийся в котлы из теплосетей.

На обследованных нами водогрейных газо-мазутных котлах отбор проб сетевой воды осуществляется не только перед котлом, как предписано требованиями [2, 9], но и на выходе из котла, что дает возможность изучить те процессы, которые происходят с сетевой водой при нагревании в котле. При сопоставлении состава прямой (на выходе) и обратной (на входе в котел) сетевой воды нами было отмечено незначительное (на 0,01 мг-экв/кг, на пределе точности аналитического определения), но явное снижение жесткости сетевой воды после прохода через котел, и существенное (на 15-30%) снижение содержания соединений железа в прямой сетевой воде по сравнению с обратной. На основании этих данных была ориентировочно оценена скорость накопления нерастворимых соединений в водогрейном котле, составляющая до 1000 кг в год (т.е. в отопительный сезон). Если предположить, что около 50 % от этого количества образует шлам и выводится из котла с периодическими продувками, то скорость роста накипи на поверхностях нагрева котла ПТВМ-100 может составлять около 300 г/м2 в год; причем около 30 % накипи составляет карбонат кальция (и основной карбонат магния), а остальные 70 % - смешанные оксиды и гидроксиды железа. Эти выводы удовлетворительно совпадают с результатами анализов вырезок труб поверхностей нагрева водогрейных котлов, выполненных лабораторией комбината.

Результаты проведенных нами наладочных работ водно-химического режима котлов-утилизаторов и водогрейных котлов металлургического предприятия еще раз подтвердили, что повышение внимания надзорных органов к ведению ВХР котлов было весьма своевременным. Владельцы энергетического оборудования должны понимать, что преимущества правильного ведения ВХР - не только в обеспечении безопасности эксплуатации котельных установок, но и в значительном экономическом эффекте, особенно при использовании тех новшеств, которые в настоящее время активно появляются на рынке препаратов и оборудования для водоподготовки.

1. Правила устройства и безопасной эксплуатации паровых и водогрейных котлов, утв. ГГТН РФ 28.05.93, с Изменениями № 1 от 07.02.96 г.; Изменениями № 2 ПБИ 10-370-00 от 10.07.00. - М. НПО ОБТ, 2000.

2. РД 10-165-97. Методические указания по надзору за водно-химическим режимом паровых и водогрейных котлов, утв. ГГТН РФ 08.12.97 г.

3. РД 10-179-98. Методические указания по разработке инструкций и режимных карт по эксплуатации установок докотловой обработки воды и по ведению водно-химического режима паровых и водогрейных котлов, утв. ГГТН РФ 09.02.98 г.

4. Сутоцкий Г.П. Вода - причина аварий в энергетике. СПб. 2001.

5. Хапонен Н.А. Вопросы надежности и безопасности котлов // Техническая конференция по водо-подготовке отопительных котельных 22-24 марта 1996 г. Сб. докладов. Госгортехнадзор России, Клуб теплоэнергетиков «Флогистон».

6. Хапонен Н.А. Кокошкин И.А. Александров Л.К. Контроль за содержанием кислорода в питательной воде паровых котлов и подпиточной воде тепловых сетей - залог безаварийного использования котельного оборудования // Безопасность труда в промышленности». 2003. № 3. С. 8.

7. РД 34.20.501-95. Правила технической эксплуатации электрических станций и сетей РФ. - М. СПО ОРГРЭС, 1996.

8. РД 24.032.01-91. Методические указания. Нормы качества питательной воды и пара, организация водно-химического режима и химического контроля паровых стационарных котлов-утилизаторов и энерготехнологических котлов. М. Минтяжмаш, 1993.

9. РД 24.031.120-91. Методические указания. Нормы качества сетевой и подпиточной воды водогрейных котлов, организация водно-химического режима и химического контроля. М. Минтяжмаш, 1993.

Проблемы водно-химического режима паровых и водогрейных котлов, работающих на металлургических предприятиях Гарбер К.Э. Кострико Е.Э. Храмов Н.А.

Другие статьи

Лекции по котлам

/ Лекции по котлам

Концентрация примесей в котловой воде второй ступени значительно выше, чем в первой ступени (в 21 раз), и соответствует концентрации в одноступенчатой схеме. Поэтому первый отсек называют чистым, а второй отсек - солевым. Выигрыш ступенчатого испарения заключается в том, что 80% котловой воды и, следовательно, пара получаются значительно чище (в 20 раз при р = 1%, Кв = 0, nI = =80%), только 20% котловой воды и пара имеют такую же концентрацию.

12.Водно-химические режимы паровых котлов.

12.1.Водно-химические режимы и нормы качества пара и питательной воды.

Водно-химический режим, рекомендованный для котла, должен обеспечить получение необходимой чистоты пара перед турбиной, ограничение допустимой скорости образования отложений на внутренних поверхностях оборудования и снижение интенсивности коррозионных процессов по пароводяному тракту. Решение этих задач определяется типом оборудования, параметрами водного теплоносителя, материалом оборудования, количеством и составом примесей и т.п.

Необходимая чистота пара определяется предотвращением заноса примесями проточной части турбины. Паровая турбина чувствительна к отложениям примесей: достаточно 3…4 кг отложений на лопатках, чтобы турбина 300 МВт снизила свою мощность и экономичность. С увеличением давления перед турбиной уменьшается проходное сечение лопаточного аппарата и, следовательно, возрастает влияние солевого заноса на ее работу. Поэтому с ростом давления перегретого пара возрастают требования к его чистоте.

В (таб.12.1) представлены нормы качества пара для барабанных котлов и котлов сверхкритического давления (по "Правилам технической эксплуатации электрических станций и сетей"). Нормирование качества пара ведется по натрию, так как соединения натрия составляют значительную долю примесей пара, и кремнекислоте, растворимость которой в паре с ростом давления существенно возрастает, и она в турбине образует трудносмываемые отложения.

В барабанных котлах нормам (таб.12.1) должен соответствовать не только перегретый, но и насыщенный пар, поскольку возможно выпадение примесей в поверхностях пароперегревателя.

Концентрация примесей в насыщенном паре определяется уносом влаги ?, %, и растворимостью в паре, характеризуемой коэффициентом распределения Кp .

Концентрацию примеси в паре Сp. уходящем из барабана котла, можно существенно снизить по сравнению с C`п. если обеспечить промывку влажного пара на специальном устройстве.

Таким образом, в барабанном котле качество пара зависит не только от качества питательной воды, но и других факторов. Поэтому нормы качества питательной воды для этих котлов устанавливаются менее жесткие (таб.12.2), использовать блочные обессоливающие установки (БОУ) экономически невыгодно.

В прямоточных котлах примеси питательной воды переходят в пар или образуют внутритрубные отложения, что отрицательно сказывается на работе котла. Качество питательной воды прямоточных котлов должно быть высокое (таб.12.2). Добавочная вода проходит химическое обессоливание. В блоках СКД организуется 100%-ная конденсатоочистка в БОУ для удаления механических примесей (нерастворенных продуктов коррозии конструкционных материалов), коллоидно-дисперсных и растворенных веществ, попадающих в конденсат за счет присосов в конденсаторе.

Ограничение образования отложений в барабанном котле происходит за счет снижения Ск.в (продувка, ступенчатое испарение), а в прямоточном котле докритического давления может быть выделена переходная зона для отложения в ней большинства примесей. Во всех случаях устанавливаются предельные концентрации примесей в питательной воде и проводится коррекция химического состава воды для уменьшения количества отложений и увеличения их теплопроводности.

Полностью избежать отложений в поверхностях котла не удается, поэтому для их удаления проводятся периодически химические промывки котла или его отдельных поверхностей.

Снижение интенсивности коррозионных процессов обеспечивается путем ввода в конденсат и питательную воду реагентов, влияющих на скорость коррозии, создающих на поверхности металла защитные пленки с высокой теплопроводностью.

В барабанных котлах нормирование жесткости питательной воды (соединений Са и Mg) вызвано тем, что соли жесткости приводят к образованию на стенках труб отложений, большого количества шлама в объеме воды и малотеплопроводных отложений, которые могут прикипать к поверхности труб. Ограничение концентрации угольной кислоты и кислорода определяется их влиянием на коррозию пароводяного тракта.

Для связывания кислорода, присутствующего в питательной воде за счет присосов в вакуумной части конденсатного тракта и неполностью удаленного при деаэрации, производится обработка турбинного конденсата гидразином N2 H4. Поддержание гидразина в пределах 20…60 мкг/кг перед котлом обеспечивает подавление кислородной коррозии.

Связывание остаточных после деаэратора концентраций углекислоты производится аммиачной обработкой питательной воды. Аммиак NH3 нейтрализует угольную кислоту и повышает рН до значений слабощелочной среды.

Чрезмерное количество аммиака (свыше 1000 мкг/кг) приводит к аммиачной коррозии латунных трубок конденсатора и ПНД.

Примеси железа и меди образуют малотеплопроводные отложения на теплонапряженных поверхностях нагрева, приводящие к пережогу труб. С ростом давления в котле интенсивность образования железооксидных отложений увеличивается (уменьшается растворимость, увеличиваются тепловые потоки).

Содержание масел в питательной воде ограничивается в связи с резким увеличением термического сопротивления экранных труб при образовании маслянистой пленки на поверхности металла.

В прямоточных котлах СКД качество питательной воды должно быть равным или близким к качеству пара.

Растворимость соединений меди, натрия и кремнекислоты в водном теплоносителе СКД достаточно велика, и эти соединения проходят котел транзитом. Допустимые концентрации Сu, Na и SiO2 в питательной воде вызваны надежной работой турбины.

Снижение допустимых концентраций соединений железа и солей жесткости в питательной воде направлено на уменьшение скорости роста малотеплопроводных отложений в радиационных поверхностях нагрева, особенно в котлах, сжигающих мазут.

В (таб.12.3) приведены допустимые значения ряда показателей работы блока СКД, определяемые применением водно-химических режимов. Показатели оцениваются при сжигании мазута через 7000 ч, а при сжигании газа и твердых топлив - через 24 000 ч эксплуатации.

12.2.Водно-химические режимы прямоточных котлов.

Гидразинно-аммиачный водный режим (ГАВР) рекомендуется на энергетических блоках, в которых трубки конденсатора и ПНД выполнены из медьсодержащих сплавов (латуни).

В воде конденсатного тракта за счет присосов воздуха в конденсаторе и на всасе конденсатного насоса растворены кислород и углекислота. Термическая деаэрация не обеспечивает полного удаления кислорода и углекислоты, поэтому ее дополняют химической обработкой питательной воды.

В конденсат (после БОУ) или в питательную воду (после деаэратора) подают (рис.12.1) гидразин-гидрат (N2 H4 •H2 O), который вступает в реакцию с кислородом с образованием в результате азота и воды. Для обеспечения полного связывания кислорода гидразин вводят в количестве, превышающем стехиометрическое значение. Оставшийся в воде избыточный гидразин (20…60 мкг/кг перед котлом) практически полностью разлагается в котле с образованием аммиака, азота и воды.

Углекислота находится в воде в виде молекул СО2 (растворенный газ) и раствора углекислоты Н2 СО3. Углекислота нейтрализуется дозируемым в питательную воду аммиаком, который вводится в количестве, обеспечивающем как нейтрализацию СО2 так и создание избытка гидроксида аммония, повышающего рН среды до 9,1 ± 0,1.

Значение показателя рН = 9,1 ± 0,1 рекомендуется при наличии в конденсатном тракте латунных трубок, но при этом не подавляется полностью ни коррозия стали, ни коррозия латуни. В результате в котел поступают оксиды железа и меди, где происходит их отложение в НРЧ. При ГАВР в котле не образуется защитных пленок, и металл корродирует. Недостатки ГАВР заметно проявились при переходе на сжигание в котлах мазута с высокими тепловыми потоками. Рост температуры стенки в НРЧ достигает 10…15°С за 1000 ч работы; внутренние отложения увеличиваются за 1000 ч на 20…30 г/м 2 в газомазутных котлах или на 15…20 г/м 2 в пылеугольных котлах; при отложениях 250…400 г/м 2 приходится выполнять химические очистки поверхностей нагрева. На газомазутных котлах межпромывочный период составляет 7000…10000 тыс. ч, а в некоторых случаях и меньше (4…6 месяцев, т.е. через 3000…4500 ч).

Гидразинный водный режим (ГВР) (нейтрально-восстановительный ВХР) применяется при наличии медьсодержащих сплавов в конденсатном тракте (рис.12.1). Гидразин вводится после БОУ (перед ПНД), в питательной воде поддерживается рН = 7,7…0,2 (за счет гидразина и работы ионитовых фильтров БОУ). При этом обеспечивается: снижение концентрации соединений меди более чем в 2 раза (до 2 мкг/кг); содержание железа в питательной воде не более 10 мкг/кг; восстановление оксидов железа и перевод их в магнетит; удлинение межпромывочного периода в газомазутных котлах до 15 000 ч; уменьшение заноса проточной части турбины.

Высокощелочной режим применяется на блоках, где отсутствуют трубки из латуни. Это разновидность гидразинно-аммиачного режима. За счет ввода аммиака поддерживается рН = 9,5…9,6, при этом скорость коррозии железа мала. Для реализации этого режима в фильтрах смешанного действия БОУ требуются специальные катиониты (в NH4 -фоpмe). Высокие концентрации аммиака в воде способствуют переходу в пар и выносу в турбину хлоридов и сульфатов, которые вызывают коррозионное растрескивание под напряжением элементов турбины.

Нейтрально-окислительный водно-химический режим (НОВР) широко распространен на блоках СКД, в ПНД которых применяются трубки из нержавеющей аустенитной стали (вместо латунных). После БОУ турбинный конденсат приближается к теоретически чистой нейтральной воде, электропроводность которой 0,04…0,06 мкСм/см. Такая вода почти не содержит ионогенных примесей, и электрохимические процессы в ней заторможены. Содержащийся в обессоленной воде кислород играет неоднозначную роль: при малой концентрации (менее 30 мкг/кг) кислорода обессоленная вода является корро-зионно-агрессивной средой; при увеличении концентрации кислорода скорость коррозии резко снижается, а при концентрации свыше 200 мкг/кг на поверхности металла образуется сплошная защитная оксидная пленка из магнетита Fe3 O4 и гематита Fe2 O3. Оксидные пленки обеспечивают длительное, устойчивое состояние стали, защищают от дальнейшей коррозии. При останове оборудования консервация его не требуется. Ухудшение качества воды (электропроводность свыше 0,2…0,3 мкСм/см) вызывает значительный рост скорости коррозии.

Нейтрально-кислородный водный режим (НКВР) применяется, когда питательная вода имеет высокую чистоту (электропроводность меньше 0,3 мкСм/см). В конденсат дозируется кислород с концентрацией 200…800 мкг/кг. Выпар из деаэратора открыт для удаления углекислоты, при этом удаляется и часть кислорода. В этом случае в питательную воду добавляется кислород в количестве 100…400 мкг/кг. Концентрация O2 должна быть такой, чтобы кислород израсходовался до участков пароперегревателя из аустенитной стали. Для поддержания нейтрального значения рН = 7 в питательную воду дозируется аммиак в небольших количествах (30…60 мкг/кг). Возможен режим с подщелачиванием воды (аммиаком) до рН = 8. Подачу газообразного кислорода в воду трудно автоматизировать.

Режим НКВР обеспечивает содержание железа в питательной воде ниже нормативного значения (в среднем 5…7 мкг/кг, на некоторых электростанциях 1…2 мкг/кг), при этом масса отложений снижается в 3…5 раз (90…150 г/м 2 за 10 000 ч работы), а скорость роста температуры стенки трубы в НРЧ не превышает 3…5 °С за 1000 ч, температура металла уменьшается. Химическую очистку поверхностей нагрева выполняют в капитальный или расширенный текущий ремонт. Отказ от дозирования гидразингидрата и больших количеств аммиака удешевляет и упрощает эксплуатацию блока, увеличивает межрегенерационный период фильтров БОУ.

Вместо газообразного кислорода для дозирования в воду применяются и другие окислители. В частности, на ряде электростанций используется раствор переоксида водорода Н2 О2. подачу которого можно автоматически регулировать в зависимости от расхода питательной воды. Концентрация Н2 О2 составляет 220…280 мкг/кг. При этом на поверхности металла (стали) образуется оксидная пленка из малых кристаллов округлой формы, без трещин, обладающая хорошими защитными свойствами. Рост отложений в НРЧ составляет 60…90 мкг/м2 за 10 000 ч, термическое сопротивление их примерно в 8 раз меньше, чем при режиме ГАВР, поэтому температура стенки растет медленно (до 1…2°С за 1000 ч).

При переводе блоков СКД с режима ГАВР на режим НОВР необходимо оснастить подогреватель ПНД трубками из аустенитной стали; обеспечить плотность конденсаторов турбин, высокое качество обессоленной и питательной воды; провести эффективную химическую очистку поверхностей котла, деаэратора и конденсатно-питательного тракта от отложений меди и других соединений.

Комплексонный водно-химический режим (КВР) организуется на базе гидразинно-аммиачного водного режима. Кроме традиционной гидразинно-аммиачной обработки конденсата и питательной воды на всас бустерных насосов (после деаэратора) подается раствор комплексона аммонийной соли этилендиаминтетрауксусной кислоты (ЭДТК или ЭДТУ).

Аммонийная соль ЭДТК образует со всеми катионами питательной воды (железа, меди, цинка, кальция, магния и др.) комплексонаты, обладающие высокой растворимостью в воде. Расчет концентрации комплексона Скомпл при СКД ведут по стехиометрическим соотношениям по концентрации в питательной воде оксидов железа Cп.в. Fe. меди Cп.в. Cu и цинка Cп.в. Zn .

При температуре 250…330 °С происходит интенсивный термолиз комплексонатов железа (разложение при высокой температуре). При термическом разложении комплексонатов железа в условиях контакта их со сталью на ее поверхности образуется пленка магнетита, плотно сцепленная со сталью и обладающая защитными свойствами. Пленка защищает сталь от общей коррозии. Образование защитной пленки магнетита происходит при отсутствии комплексонатов других катионов, поэтому требуется высокое качество питательной воды, 100%-ная конденсатоочистка. Процесс термолиза зависит только от температуры и не зависит от тепловой нагрузки. Поэтому образование оксидной пленки происходит на обогреваемых и необогреваемых трубах, равномерно по периметру обогреваемой трубы. Зона термолиза комплексоната железа включает последний ПВД (ПВД-8), экономайзер, подвесные трубы, начало НРЧ.

Основная масса оксидов железа (до 80%) выпадает на участках до НРЧ с относительно низкими тепловыми потоками (рис.12.2). При этом в НРЧ количество отложившихся оксидов железа уменьшается в 3-4 раза по сравнению с ГАВР (?СFe = 2…3 мкг/кг вместо 8…10 мкг/кг).

Отложения образуют плотный слой с теплопроводностью ? = 2…3 Вт/(м•К) - в 3…4 раза выше теплопроводности при режиме ГАВР. В результате этого рост температуры стенки трубы НРЧ составляет за 1000 ч менее 5°С и межпромывочный период увеличивается.

12.3.Водно-химические режимы барабанных котлов.

Состав примесей питательной воды зависит от рабочих параметров (давления, температуры) барабанных котлов. С ростом давления, которое сопровождается, как правило, увеличением мощности котла, повышаются требования к качеству пара и питательной воды. При среднем (давление в барабане P менее 11 МПа) и высоком (P ? 11 МПа) давлении добавочная вода проходит умягчение и в ней содержатся легкорастворимые соединения, в основном соли натрия. При сверхвысоком давлении (P = 15,5 МПа) добавляется обессоленная вода. В результате присосов охлаждающей воды в конденсаторе в питательную воду поступают соли жесткости (Са и Mg), характеризующиеся очень малой растворимостью. С увеличением давления в котле допустимые значения концентрации солей жесткости уменьшаются. При этом увеличивается доля продуктов коррозии, в первую очередь - железо-оксидных соединений.

В конденсате турбины и питательной воде барабанных котлов присутствуют кислород и свободная углекислота. Относительно высокая концентрация примесей в воде не дает возможности использовать нейтрально-окислительные режимы. Поэтому для связывания кислорода в питательную воду подается гидразин с избыточной концентрацией 20…60 мкг/кг, а для нейтрализации углекислоты и создания щелочной среды (рН = 9,1) - аммиак (до 1000 мкг/кг).

Фосфатный режим применяется для исключения отложения солей жесткости в экранных трубах. В котловую воду (в барабан котла) вводятся фосфаты, обычно в виде натриевых солей ортофосфорной кислоты (Na3 PO4. Na2 HPO4 ). При гидролизе этих солей в воде появляется едкий натр NaOH. В результате взаимодействия фосфатов с солями кальция образуется в водяном объеме шлам [гидроксилапатит Ca3 (PO4 )2 • Ca3 (OH)2 ], который удаляется из котла с непрерывной продувкой.

Для образования гидроксилапатита должен выдерживаться определенный избыток PO3 4+ и поддерживаться высокощелочная среда.

Фосфатный режим не устраняет железооксидного и медного накипеобразования, вызывает железофосфатное накипеобразование, отложения цинка и магния. Поэтому он наиболее пригоден для среднего давления. При высоком и сверхвысоком давлении недостатки его существенны.

Рост массы отложений в газомазутных котлах при фосфатном режиме составляет 20 г/м 2 за 1000 ч. Если принять допустимое количество отложений 350…400 г/м 2. то химическую промывку надо выполнять через 15…20 тыс.ч. Для угольных котлов это значение в 2 раза больше.

Бескоррекционный водный режим используется при высоком и сверхвысоком давлении, когда качество питательной воды хорошее. На случай больших присосов в конденсаторе и повышение концентрации солей жесткости предусматривается возможность перехода на режим фосфатирования.

При бескоррекционном режиме возможны относительно низкие значения рН, что способствует усилению коррозии поверхностей нагрева. Для увеличения значения рН до необходимого уровня (рН > 9) лучше добавлять не летучий аммиак, а сильные щелочи NaOH, LiOH. Гидроксид лития при взаимодействии с железом (на поверхности стенки) образует стабильную пленку LiFeO2 (феррат лития), но с фосфатами литий образует труднорастворимые в воде соединения, образующие отложения на стенках трубы. Гидроксид лития нельзя применять при возможных режимах фосфатирования. Применяется едкий натр NaOH.

Комплексонный водный режим основан на использовании двухзамещенной натриевой соли ЭДТК (трилон Б). Ввод трилона Б производится непосредственно перед котлом (в сниженный узел питания). Комплексон образует с кальцием, так же как и с другими катионами, комплексонат кальция, обладающий высокой растворимостью. Комплексонаты выводятся из котла с продувочной водой.

При среднем давлении концентрация солей жесткости велика, расход трилона Б большой и стоимость обработки воды также велика.

Интенсивное разложение комплексоната железа с образованием защитной пленки происходит при температурах воды, соответствующих высокому и сверхвысокому давлению. Но при сверхвысоком давлении (P = 15,5 МПа, tS = 343°С) разлагаются комплексонаты кальция и образующийся гидроксид кальция внедряется в железооксидную пленку и нарушает ее сплошность. Для повышения термической стойкости комплексонатов кальция дозируют щелочь - едкий натр NaOH (комплексонно-щелочной режим). В чистом отсеке барабана поддерживается рН = 10,4.

Комплексон дозируют в воду периодически (8 ч/сут в течение 2 сут), а NaOH - непрерывно.

Комплексонно-щелочной режим имеет ряд преимуществ перед фосфатным (при сверхвысоком давлении): содержание железа в котловой воде в растворенном виде увеличивается, вывод его с продувкой эффективнее; в насыщенном паре Fe меньше, так как коэффициент распределения снижается в 2,5 раза; толщина отложений на стенке меньше в несколько раз, теплопроводность - выше; межпромывочный период удлиняется в несколько раз; нет необходимости в консервации при останове котла для защиты стояночной коррозии.

12.4.Влияние внутрибарабанных устройств на качество котловой воды и насыщенного пара.

Качество насыщенного (при ДКД) и перегретого пара в прямоточном котле определяется концентрацией примесей в питательной воде. В барабанном котле качество насыщенного пара зависит не только от качества питательной воды, но и от методов организации водного режима в самом котле, в его барабане. К таким методам относится организация ступенчатого испарения и продувки, сепарационных устройств и промывки пара.

Эффективность ступенчатого испарения и продувки котла рассмотрена в §11.7. При достаточно высоком качестве питательной воды выполняют двухступенчатую схему испарения при паропроизводительности второго (солевого) отсека 3…5% (иногда 10%). Солевой отсек внутри барабана устанавливают на мощных котлах редко, так как возможный в переходных режимах переток воды или переброс через перегородку из солевого отсека в чистый снижает эффект от ступенчатого испарения. Второй отсек организуется в выносном циклоне, пар из него направляется в барабан на промывку.

При достаточно больших концентрациях примеси в питательной воде возможна организация трехступенчатой схемы испарения. Паропроизводительность второго и третьего отсеков в этом случае выбирается в пределах 3…10%.

Сепарация капельной влаги из пара и сепарационные устройства рассматривались в гл.9. Для обеспечения высокой чистоты насыщенного пара в барабанах без промывки пара унос влаги не должен превышать 0,02% паропроизводительности. При промывке пара из-за того, что места для организации сепарационных устройств остается мало, допускается влажность пара до промывочного устройства и после него в размере 0,05% (в некоторых случаях - до 0,1%). Увеличение влажности компенсируется эффективной промывкой пара.

Промывка насыщенного пара питательной водой проводится путем барботажа его через слой воды на промывочном устройстве, гидравлическая работа которого анализировалась в гл.9. На рис.12.3 показана принципиальная схема промывки пара, а на рис.12.4 обозначены потоки воды и примеси. Пар из контуров циркуляции барботирует через слой котловой воды и выходит из нее с концентрацией определяемой по формуле

где ?1 - влажность пара; Кp1 - коэффициент распределения в системе котловая вода - насыщенный пар.

Пар поступает на паропромывочное устройство и барботирует через слой воды. При этом в системе промывочная вода - пар устанавливается новое равновесное состояние, соответствующее коэффициенту распределения Кp2 .

Так как концентрация примесей в промывочной воде Спром меньше Ск.в. то концентрация примесей в паре Сп уменьшается (по сравнению с Cп `), а примеси в количестве ( Cп ` - Сп) переходят в промывочную воду. Концентрация примесей в паре после промывки будет равна

Промывочная вода поступает в водяной объем барабана, и концентрация примесей в котловой воде Ск.в связана с Спром формулой (11.42), где вместо Сп.в необходимо подставить Спром

Примем ? = ?1 = ?2 = 0,05%; Kp = Кp1 = Кp2 = 1%,р = 1%.Определим степень очистки пара от примесей после промывки. Для этого разделим выражение для Cп ` на Cп

Таким образом, пар после промывки стал чище почти в 50 раз (при принятых значениях ?, Кp ,р ). С увеличением Кp эффективность промывки снижается.

Формула (12.5) показывает, что относительное снижение концентрации примеси в паре при промывке зависит от продувки р - с ростом продувки эффективность промывки падает, но при этом абсолютные величины Cп ` и Cп снижаются (уменьшаются Cк.в ). В результате качество пара Сп мало зависит от продувки: при Кp + ? = 0 вообще не зависит, а при Кp + ? =10% увеличение продувки с 1 до 5% приводит к снижению Сп всего в 1,7 раза. Поэтому продувка в рассматриваемом случае должна выбираться не по Сп. а по концентрации примесей в котловой воде Ск.в. влияющей на интенсивность отложения примесей в экранных трубах. При двухступенчатой схеме испарения оптимальная паропроизводительность второй ступени nII при промывке пара составляет 3%.

12.5.Химические очистки паровых котлов.

Предпусковые химические очистки котла проводятся с целью удаления окалины и песка, используемого при гибе труб при монтаже, продуктов коррозии.

Для удаления взвесей (грата, песка) сначала производят интенсивную водную промывку труб со скоростью воды 1…2 м/с. После этого проводят щелочение поверхностей раствором аммиака с добавлением поверхностно-активных соединений.

Основным этапом очистки является удаление оксидов железа. Для этого используют растворы кислот. Из минеральных кислот чаще всего применяют соляную кислоту. Поскольку С1-ион отрицательно влияет на аустенитную сталь, очистке соляной кислотой подвергаются поверхности нагрева до встроенной задвижки. Недостатком соляной кислоты является и тот факт, что оксиды железа переходят в воду в виде крупной взвеси, что может привести к забиванию отдельных труб и участков коллекторов.